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Abstract—This paper presents a complete R-curve analysis for a single surface crack and an array
of equally spaced parallel surface cracks in transformation toughened ceramics (TTC). The problem
is reduced to the solution of a pair of singular integral equations in which the dislocation density
function and the transformation zone boundary are the unknown functions. The form of the
equations does not depend on the number of surface cracks being studied ; only the weight functions
are different. The singularities of the weight functions and of the dislocation density functions at
the crack tip and at the intersection of the crack by the transformation zone wake are analytically
isolated for accurate numerical integration of the integral equations.

1. INTRODUCTION

High stresses such as exist at sharp crack tips induce tetragonal to monoclinic phase
transformation in zirconia ceramics as a result of which these ceramics have a higher
fracture toughness. The mechanics of transformation toughened ceramics has been exten-
sively studied by many researchers in the past decade [e.g. McMeeking and Evans (1982) ;
Budiansky et al. (1983); Rose (1987)]. Earlier studies concentrated on the steady-state
toughening configuration, wherein a semi-infinite planar crack was surrounded by a semi-
infinite zone of transformed material. Subsequently, a complete R-curve analysis of the
growing crack was performed from the onset of its growth to the attainment of steady-state
conditions, both for a semi-infinite crack (Stump and Budiansky, 1989a) and a finite internal
crack (Stump and Budiansky, 1989b ; Andreasen, 1990 ; see also Andreasen and Karihaloo,
1992). A recent paper by Stump (1992) solved the problem of a single surface crack
growing in a material containing a pre-existing transformation zone, thus avoiding many
mathematical difficulties (see later).

This paper presents a complete R-curve analysis of a single surface crack and an array
of equally spaced parallel surface cracks in transformation toughened ceramics. These
surface crack models are expected to be a good approximation for surface damage and
therefore a good basis for analysing the thermal shock, thermal fatigue, wear and other
phenomena in transformation toughened ceramics. The problem of surface cracks in non-
transforming elastic materials has been solved by many investigators. The works of Nemat-
Nasser et al. (1978), Keer et al. (1979), and Nemat-Nasser et al. (1980) which address the
stability of surface cracks are of particular interest to this paper.

The configuration of an array of equally spaced (spacing d) parallel surface cracks in
a transformation toughened ceramic is depicted in Fig. 1. A single surface crack can be
thought of as a special case of this configuration in which d — co. However, in the analysis
to follow, the single surface crack geometry is studied first and then generalised to an array
of surface cracks. The length of each crack in the array is ¢, and the half plane is assumed
to be loaded at infinity by a constant stress 6™ normal to the cracks. As the external stress
is applied a zone of transformed material S forms at each crack tip. It is assumed that the
tetragonal to monoclinic transformation is induced when the mean stress attains a critical
value ¢¢,. In common with most previous investigations, it is assumed that the trans-
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Fig. 1. Model configuration for an array of parallel surface cracks.
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formation strains are purely dilatational and constant inside the zone S. The effects of
elastic mismatch between the transformed and non-transformed particles (Huang et al.,
1993) and variability of dilatational strain inside the zone (Karihaloo, 1991) are ignored,
and no reverse transformation is assumed to take place.

2. MATHEMATICAL FORMULATION

Each crack in the array is modelled by a pile-up of dislocations (Fig. 2). First, the free
surface problem is solved analytically for a dislocation using Muskhelishvili’s theory of
plane elasticity. Then the density of dislocations in the pile-up is adjusted to meet the
traction free condition on the crack faces. The transformation zone boundary ahead of
each crack tip is determined by the critical mean stress criterion, but first the free surface
problem for a homogeneous inclusion of arbitrary shape is solved by using Eshelby formalism
and Muskhelishvili’s theory of plane elasticity. Finally, the dislocation density function and
the transformation zone boundary are determined from the solution of two coupled singular
integral equations.

We recapitulate first the essential steps in the derivation of the governing equations
for the elastic problem of an arbitrarily placed single surface crack with its transformation
zone (Fig. 3). The governing equations are stated in terms of certain weight functions. For

—_—
<

TTTTTT

Fig. 2. Dislocation pile up for modelling a single surface crack.
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Fig. 3. Model configuration for an arbitrarily placed surface crack.
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the description of an array of equally spaced parallel surface cracks the governing equations
retain the same form ; only the weight functions are different.

The complex potentials for a dislocation with Burgers vector in the x-direction and
located at z, = x,+ iy, under plane strain conditions (Fig. 3) were given by Muskhelishvili :

b —ibE

(I)oo(z) - 87[(1 _v2)(Z"'Z())

b, WE I %
‘Pm(z)—sn(l_vz)<(z_zo) (2_20)2>’ M

where E is Young’s modulus, v is Poisson’s ratio and b is the magnitude of Burgers vector.

The complex potentials for a homogeneous inclusion with uniform dilatational strains
¢” can be obtained in several ways. One can use the concept of centres of strains (Rose,
1987) or one can use the Eshelby formalism together with Muskhelishvili’s theory of plane
elasticity. Whichever route one takes, the potentials are:

OT(z)=4
ron_ EeT i
¥ (2) _2n(1_v)<Lz_zo dxo+B>, )

where 4 = —[Ee")/[4(1—v)], B= —nforze S, and 4 = B = 0, otherwise.

In (1) and (2) and the sequel, superscripts D and T refer to dislocations and trans-
formation, respectively. The stresses corresponding to the complex potentials of (1) and (2)
are calculated from:

ontop =2{0,+P,(2)}
oy, — 05+ 2ios, = 2{2'(1)'00 (2)+¥, (Z)}, 3)

where ®_, can be ®2 or ®, and similarly for ¥, an overbar denotes complex conjugate
and a prime differentiation with respect to z.

In order to annul the stresses on the free surface y = 0, it is necessary to modify the
above full plane potentials. However, half plane problems can be solved using just one
potential. Muskhelishvili has shown how to construct a potential @, for a half plane with
prescribed stresses o,, and g, on the free surface y = 0,

1 {* e,—io,
Mdt. 6))

©@="ami) i

The half plane potential ®5(z) for a dislocation is obtained from (4) with

o,,—lo,, = — (0, —ic%;), where o}, —io, are the stresses corresponding to (1) at y = 0,
iEb z—2q
8n(1—v?) (z—2,)%’ y<0
D= gy 5)

TS -z * 70

The half plane potential ®7(z) for the transformation zone is similarly determined
from (2)—(4) to be:
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®;(z) = 0 when y > 0. The stresses corresponding to the half-plane potentials are deter-
mined from:

G.?.\' + 0.31' = 2 {(DO (Z) + dl)O (2)}
oy =0 +2i6}, = 2{(Z—2)®(2) — o (2) — Bo(2)}. (M

The total stress o7, across the crack must vanish. This stress is made up of the externally
applied field and contributions from the pile-up of dislocations representing the crack and
from the transformation zone. The former contribution can be written as:

J;fo(z, 20)D(yo) dy,/b,

where D(y,) is the dislocation density function such that D(y,)dy, is the Burgers vector
of the dislocations between y, and yo+dy,, and the latter ¢7.(2).

The stress o2, due to a single dislocation is calculated from (1), (3), (4), (5) and (7)
and the stress ¢7, from (2), (3), (4), (6) and (7). Introducing the weight functions g°(z, z,)
and g7(z, z,), the traction free condition along the crack can be written as:

0= (U + )J‘ (Z Zo)dx0+ z)f D(y,)g° (z, zo)d}’o> . (8)

zeC

The underscored arguments indicate functional dependence on the Cartesian coor-
dinates x and y. For an arbitrarily placed single surface crack the real weight functions

9°(z,z) and g7 (z, z,) are:

F (o) = SOV o (+y0)’—(x—x0)® (y—¥0)
20T (4 p0) + (x—x0)? [(P+y0)?+(x—x0)"1  (r—po)’+(x—x0)*’
&)
p _ 2(y+yo) _ (P+10)’ = (x—xo)°
e T S H et (Te DAL L
0 2 —Ao0 2 —Jo 2 3 A0 2
Fypo(yyo) 2 X)) U2 #3x) g

[(7+0)> + (x—x0)]? [(Y—yo)* +(x—x0)11*"

The integral eqn (8) in the unknown density function D(y,) applies for any arbitrarily
placed surface crack. By summing the stresses from each crack and its corresponding
transformation zone in the self-similar array of equally spaced surface cracks two new
weight functions, denoted G°(z, z,) and G (z, z,), are obtained from g°(z, zo) and g7 (z, z,).
Substituting these into the integral eqn (8) gives the zero traction condition across each
crack in the array. Details of G?(z, z,) and G7(z, z,) are given in the Appendix.

In order to determine the transformation zone boundary S we use the critical mean
stress criterion for transformation. The mean stress in the plane strain conditions is given
by:
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6n= 3 (0u+0,) = HUHIROG). (1)

Equation (11) holds for both plane and half-plane potentials. Superposition of the
stresses from the applied field, dislocations and transformation, using (11), gives:

i =13 (e 4L + o @0+ [ o2 4o e 20 222

dyo) . (12)

Finally, from (1), (2), (3), and (5)-(7) and (12) one obtains the following integral
equation for the determination of the transformation zone boundary :

I+v( Ee” r E )
1= E(O’ + mﬁh (_Z_, EO) dxq+ ~—4n(1_v2) LD(yo)h (Z, EO) dyo ZES‘ (13)

The weight functions 4°(z, z,) and A"(z, z,) in (13) are given by:

T _ 4(y+yo)
Wz 20 = 0+ (r—xa)? (4
hD(Z z ) = 2(}"")’0) _ (y+y0)2_(x—x0)2
B2 Ay +—x0)? P [y +y0) + (x—x0) )
2(y—yo) (15)

T (y—yo) + (x—xp)?"

As before, two new weight functions H”(z, z,) and H"(z, zo) can be obtained from
(14) and (15) by summing the mean stresses from each crack in the self-similar array of
equally spaced parallel cracks. Substitution of these weight functions into (13) gives the
integral equation for the determination of the transformation zone boundary S of each
crack in the array. Details of H”(z, zo) and H7(z, z,) are given in the Appendix.

This concludes the derivation of the governing equations for the elastic problem
depicted in Fig. 1.

3. NUMERICAL SOLUTION

It is convenient to rewrite (8) and (13) in a form suitable for analysing the R-curve
behaviour of TTC. To do this, we use the measure of transformation strength w, introduced
by Amazigo and Budiansky (1988) and the length measure L of Stump and Budiansky

(1989a) :
=Ec,,.0,,r(l+v>; L=3<K¢-(1fv)>z’ 6
o, \1—v 97 O

where K¢ is the intrinsic fracture toughness of the ceramic, 6, is the dilatation caused by
the transformation of a particle and ¢, is the fraction of transformed particles in the
composite TTC. Moreover, the far-field mode 7 stress state 6% is expressed through an
applied stress intensity factor:

app
oo =K (17

BoJ/nc’

where the constant B, is approximately equal to 1.1215 for a single surface crack. For an

SAS 31:1-E
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array of equally spaced parallel surface cracks, B, varies with the spacing d (see e.g.
Murakami, 1987). Finally, we define a new dislocation density function D*(y,) via:

D*(y,) = D(yo). (18)

__E
12705, (1 —v)

Substitution of (16)—(18) into the integral equations (8) and (13) gives:

KdPP T * D .
= B.K° \/;c nLg (z, z0) dxo+LD (V0)g°(z,20)d(po); zeC, (19)

Ke@rp
NG \/; 18n fh (2, 20) dxo+f D*(yo)h°(z, z0)d(yo); z€S. (20)

Equations (19) and (20) determine the dislocation density function D*{(y,) and the trans-
formation zone boundary S for a given remote load K*" and transformation strength w
for a single surface crack. The same equations also describe the array of parallel surface
cracks when the weight functions g7, g°, A" and h” are replaced by G7, G®, H" and H”,
respectively.

In order to analyse the initial toughening and subsequent R-curve behaviour it is
necessary to impose a dynamic condition for crack growth. It is assumed that crack growth
will begin and then continue in a quasi-static manner if the stress intensity factor at the
crack tip K" equals the intrinsic fracture toughness of the ceramic :

K™ = K¢ Q1)

where, by definition :

K" le+yl

&= lim 2mD*() =77 (22)

Combining (19)-(22) gives the following system of equations at the onset of crack growth:

Keve
* D
BOK‘\/; 18nf (z, Zo)dxo+J D*(y0)g”(z,20)d(yo); zeC
K \/’ h 4 e hD ] .
B(,K” 2 187 s (z, z0) x0+ D*(yo)h”(z,z0)d(yo); z€
= lim 2zD*(y) '“;y'. (23)

The unknowns in (23) are the applied stress intensity factor K** that reflects the
apparent fracture toughness at the onset of crack growth, the transformation zone boundary
S and the dislocation density function D*(y,).

The integral equations (23) contain a number of singularities. First, the dislocation
density function D* (y,) has the usual square root singularity at the crack tip (22). Secondly,
as the crack line stress imposed by the transformation zone suffers a discontinuity when its
wake crosses the crack, the dislocation density function has a logarithmic singularity.
Thirdly, the weight functions contain singularities of the ordinary Cauchy type, as well
as weak singularities at the surface (y = 0) and at the intersection of the crack by the
transformation zone boundary. For accurate numerical solution of (23) it is imperative to
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have good control over these singularities. This has been ensured by isolating the singu-
larities and treating them analytically as far as possible, so that only smooth, non-singular
functions are subject to numerical treatment. Details will be published elsewhere.

For a quasi-statically growing crack (23) have to be restated in an incremental form
as follows:

Karp
B Kl. \/:c 187'(Jg (Z’Zo)dxo J‘ D*(y())g (Z, zﬂ)d(yo) Zec
0

KaPP
%* D
BOK‘\/Z: T8m fh (z, Zo)dxo‘i‘f D*(y0)h°(z,z0)d(¥o); Z€ Spront

. [le+A
1= lm 2zD*(y) letActy| (24)
y=+—{c+Ad~ L

S(c)wake = S(C+ Ac)wake-

The quasi-static growth regime has to be distinguished from the onset of crack growth
because the iterative method of solution used for the determination of the transformation
zone shape S assumes that the location at which the crack is crossed by the wake of the
zone is prescribed and fixed during an iteration.

The solution of the system of eqns (23) was obtained by improving a starting guess
for the transformation zone shape through a number of perturbations. By inverting the
first integral equation (23) for each perturbed shape, an improved zone shape was obtained
by Newton—-Raphson method.

For the quasi-statically growing crack the last equation (24) expresses the fact that no
reverse transformation is permitted. The transformation zone shape is only changed at the
front Sg.,. where the mean stress is rising, while a wake of transformed material is allowed
to develop behind the tip of the growing crack where the mean stress is falling. The iterative
procedure for the solution of (24) involved making a guess for the transformation zone
front Sy, and solving the first integral equation for the dislocation density function D*(y,).
Substitution of this result into the second integral equation permitted an improvement to
be made on the assumed transformation zone shape. This iterative process was repeated
until covergence was attained. The last two side conditions (24) were met by adjust-
ing K*™ iteratively and by joining the transformation zone wake S, and front S, by
common tangents.

4. RESULTS AND DISCUSSION

The presentation of results and discussion begins with an isolated surface crack and is
followed by an array of surface cracks.

Figure 4 shows examples of transformation zone shapes at the onset of crack growth
obtained by solving the set of eqns (23). A monotonic increase in transformation zone size
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Fig. 4. Initial transformation zone shapes for a single surface crack. ¢o/L = 10, w = 0, 5, ..., 30.
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Fig. 5. SIFs at the onset of crack growth for single surface cracks. ¢o/L = 5, 10, 50, 500.

with increasing o is valid for initial crack lengths which are not too small. The critical initial
crack length ¢, at which transformation zone diverges for vanishing o corresponds to ¢®
exceeding the critical mean stress o, before crack growth is initiated and is approximately
equal to ¢o/L = 0.3975 for a single surface crack. As for internal cracks an initial toughness
decrement appears for these critical cracks and consequently the transformation zone size
becomes bounded for nonzero values of the transformation parameter w even for an initial
crack length equal to the critical crack length. It is a characteristic of the present model
that the transformation zone detaches from the crack tip for w > 0.

The apparent toughness at the onset of crack growth for several initial crack lengths
is shown in Fig. 5. A toughness decrement is observed before crack growth is induced. For
longer initial crack lengths however a slight toughness increment is observed. The tough-
ening for a semi-infinite crack is within 0.5% of the toughening for the surface crack with
initial length ¢,/L = 500. The trend of decreasing toughness for shorter initial cracks is in
agreement with the results for internal cracks (Stump and Budiansky, 1989a).

Figures 6 and 7 show the R-curves determined from equations (24) for several initial
crack lengths and for values of the transformation density w equal to 5 and 10, respectively.

K*#/K*
1.3} . c,/L=500
1.2 c/L=5
1.1
1.0
09 =5 CofL~d00 mensrenenns
0.8 1 1 1 )
0 5 10 15 20

KePPrKe

1.0 w=10 CofL—300 oo,
0.8 Ll L L s Lo L J s
0 5 10 15 20 25 30 35 40 45 50

Ac/L
Fig. 7. R-curves for single surface cracks. co/L = §, 10, 50, 500.
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Fig. 8. Applied stress for single surface cracks. ¢o/L = 5, 10, 50, 500.

The limiting cases of infinite initial crack lengths were first obtained by Stump and Budi-
ansky (1989a). Peaks in toughening appear before steady-state conditions are reached. The
presence of the free surface causes these peaks to get shallower with decreasing initial crack
length ; the peaks may even be less than the steady-state toughness, as seen for an initial
crack length ¢,/L = 5 in Fig. 7. Monotonically rising R-curves can be seen most vividly for
¢o/L = 5 in Fig. 6, but such behaviour is the exception rather than the rule for surface
cracks. It is worth noting that the results of Figs 6 and 7 compare very favourably with
Stump’s results (1992). To see this, one need just compare these figures with the solid lines
in Fig. 9 of Stump’s paper. Of course, the toughening ratios at the onset of crack extension
will be different because Stump considers growth from a pre-existing transformation zone.

The appearance of peaks in toughening prior to the attainment of steady-state tough-
ening seems to be an inherent feature of models based on the critical mean stress trans-
formation criterion, and are found for semi-infinite cracks (Stump and Budiansky, 1989a),
for uniaxially loaded internal cracks (Stump and Budiansky, 1989b), for biaxially loaded
internal cracks (Andreasen, 1990), and for shorter initial crack lengths. The results for a
surface crack are similar to those for uniaxially loaded internal cracks (Stump and Budian-
sky, 1989b), but contrast with the results for internal cracks under equal biaxial loading
(Andreasen, 1990). The results for infinite initial crack lengths shown by broken curves in
Figs 6 and 7 have converged to within a fraction of a percent of the steady-state toughening
value (Amazigo and Budiansky, 1988). In comparison with semi-infinite cracks the con-
vergence to steady-state conditions by the R-curves for finite initial crack lengths was
considerably slower.

The applied stress at infinity ¢ necessary for maintaining quasi-static crack growth
is shown in Figs 8 and 9 for several initial crack lengths and for values of the transformation
parameter @ equal to S and 10 corresponding to the R-curves of Figs 6 and 7, respectively.
The applied stress is obtained from the following relation between stress and toughness :

a*(Ac) K™ (A0) [ ¢
e = K co+Ac’

(25)

where the normalizing stress ¢° is the stress necessary to induce crack growth in the absence
of transformation.

o~lc®
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0.6
0.4
0.2

o.o 1 i ' L 1 ) 1 1 1 J
0 5 10 15 20 25 30 35 40 45 50

Ac/L
Fig. 9. Applied stress for single surface cracks. c,/L = 5, 10, 50, 500.
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Fig. 10. Transformation zone shapes for single surface cracks. ¢,/L = 5, 10, 50, 500, Ac/L = 30.

A comparison of R-curves with the corresponding curves for the applied stress reveals
that the peaks in the stress, determining the ultimate strength, appear at distances of crack
growth which are shorter than those necessary for peak toughness. Thus the peak toughness
is not fully available for the strengthening of the material except for very long initial crack
lengths.

The peaks in the R-curve behaviour result from the widening of transformation zone
as seen in Fig. 10. As with the peaks in toughening, the zone widening diminishes with
decreasing initial crack length.

Reciprocal peak toughening is shown in Fig. 11 for values of the transformation
parameter @ up to 16. Lock-up values of this parameter at which divergence of the
transformation zone appears and the toughness peak tends to infinity have not been
determined. For initial crack lengths of ¢o/L = 5 and 10 the lock-up values are less than
the lock-up value of w = 20.2 for semi-infinite cracks (Stump and Budiansky, 1989a),
whereas the lock-up for initial crack lengths of ¢q/L = 50 and 500 is expected to appear at
values intermediate between the lock-up value for semi-infinite cracks and for steady-state
conditions (w = 30.0). The peak toughening is the smaller the shorter the initial crack
length for values of transformation parameter which is not too high. For w larger than
about 12 a change in this trend is noticed as the peak toughness for shorter cracks exceeds
that for longer cracks.

Reciprocal peak strengthening is shown in Fig. 12 for values of the transformation
parameter up to 20. The results are consistent with the results for internal cracks in that
initially weak materials with long inherent cracks are more susceptible to strengthening
than initially strong materials.

The decrease in strengthening appearing for increasing values of the transformation
parameter for the shorter initial crack lengths is due to softening of the R-curve, i.e. the
slope of the R-curve diminishes for short crack growth distances. For w = 20 divergence
of the transformation zone appears for initial crack lengths of ¢,/L = 5 and 10 for finite
crack growth distances, thus the lock-up value for w has been exceeded.

We now present some results for arrays of surface cracks. The influence of interaction
of the cracks in the array is emphasized by comparing the results with a single surface crack.

K/Kre

1.0

0.8

0.6

0.4

0.2f

0.0 L L 1 A . I A J
0 2 4 6 8 10 12 14 18
w

Fig. 11. Reciprocal peak toughening. co/L = 5, 10, 50, 500, .
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Fig. 12. Reciprocal peak strengthening. ¢,/L = 5, 10, 50, 500, 0.
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Fig. 13. Initial transformation zone shapes for an array for surface cracks. d/L = 10, 20, 30, 40, 50,
0.

Examples of initial transformation zone shapes for an array of surface cracks obtained
by solving eqns (23) with the weight functions given in the Appendix, are shown in Fig. 13
for several crack spacings. The initial toughening accompanying the zones changes from a
decrement of approximately 3% for infinite crack spacing to an increment of approximately
8% for crack spacing equal to the crack length c¢y/L = d/L = 10.

The increment in apparent toughness at the onset of crack growth for crack spacings
d/L less than approximately 40 is in contrast to previous results on initial toughening where
only a very slight increment in toughness appears for very long cracks and relatively high
values of the transformation parameter w.

R-curves for various initial crack lengths obtained by solving eqns (24) are shown in
Fig. 14. The peaks in the apparent toughness induced by the transformation are the stronger
the smaller the crack spacing. This is because of the well-known reduction in the stress
intensity factor for an array of cracks compared to a single crack.

Strength curves for an array of surface cracks can be obtained from the following
relation between the stress and stress intensity factors:

K*P/K*
1.8
1.6
1.4
1.2 =10
¢/L=10
1.0}
oBl—i— o 4.
0 5 10 15 20 25 30 35 40 45 50

Ac/L
Fig. 14. R-curves for an array of surface cracks. d/L = 30, 50, 100, co.
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Fig. 15. Stress curves for an array of surface cracks. d/L = 30, 50, 100, co.

o” K B, Co %
6° K BN co+Ac’ (26)

where the effect of crack growth itself on strengthening has been incorporated. The nor-
malising stress is the stress needed to initiate crack growth in the absence of transformation.
B, is the geometrical amplification factor for the stress intensity factor pertaining to the
initial crack configuration (Murakami, 1987). B is the corresponding geometrical factor
pertaining to the changing geometry as the cracks are allowed to grow which is thus a
function of the crack growth.

Stress curves corresponding to the R-curves are depicted in Fig. 15. The R-curve effect
induces peaks in the stress curves which determine the ultimate strength of these ceramics.
The presence of multiple surface cracks is therefore beneficial as compared with a single
crack. In the limit when the steady-state conditions prevail the stress needed to give quasi-
static crack growth becomes constant except for single surface cracks.

5. CONCLUDING REMARKS

The model presented for interacting surface cracks is expected to be well suited also
for analysing situations where surface damage is expected to be an important factor. Before
applying such an analysis however it is necessary to consider the stability of the cracks in
the actual surface. This is not attempted in the present paper. However, the R-curve
behaviour induced by transformation toughening should ensure a certain degree of stability
in the crack growth. In the absence of transformation small variations in the lengths of
cracks in the array in ideally brittle materials will cause only the longest crack to grow. In
the presence of transformation however the R-curve behaviour counteracts this tendency,
and crack growth can be expected from a large number of surface cracks before failure
eventually is caused by the growth of the longest crack. Another important factor to be
considered is crack path stability. Small variations in crack lengths or crack distances will
cause the crack paths to depart from the straightness implied in the present model.
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APPENDIX

The weight functions for an array of surface cracks are obtained by summing the weight functions (9), (10),
(14) and (15) for single surface cracks:

GP(z,z0) = Y g°(z,x0+kd, y,)

k=—x
G'(z,z0) = Y, g7(z,xa+kd, o)
k= —o0
Hzz) = ¥ hP(z xo+kd, yo)
k=—o0
H'(z,z0) = Y, h"(z,x0+kd, yo). (A1)
k=—o0

In order to obtain expressions for the weight functions for an array of parallel surface cracks it is expedient
to rewrite the weight functions for a single surface crack as:

[ d &? y+¥o d Y=o
9°(z.kd, o) = | 2+ (y+3y0) 5= +2 —]————-— 2+ 0=y 5 |55 k)
[ [7) y+yo Y—JYo
T(z,x0+kd, yo) = | 342 —] -
9@ Xothd o) = | 3405 | G+ ot kd)? ~ (7= 7o)+ (ro +hd)?
[ i y+Yo y—y
Ko(z,kd, yo) = | 2+4 —] - .
@hd yo) = | 24405, | 0+ kD 2 (=50) '+ (eo +d)?

y+yo
+y0)’ +(x—xo+kd)*’

B (z,xo+kd, yo) = 4 (A2)

It is assumed in (A2) that one crack is located at x = 0. As the functions G® and G7 enter the equation
expressing the traction free condition across each crack in the array, the variable z is on the crack. The functions
H" and HT on the other hand enter the equation that determines the boundary of the transformation zone of
each crack, so the variable z is on this zone boundary. z, is a variable of integration. For G® and H?, z, is on the
crack line, and for G™ and H7, it is on the transformation zone boundary.

By using the following standard summation formulas:

kil ] _T sinh (27n/d)
) n*+(b+kd)?  dcosh (2ny/d) —cos 2nb/d)

k=—a

S iy = g eoth (o) (A3

(Al) and (A2) give:

n

G®(z,24) = g {2 coth (n(y+y,)/d)— (‘—1)

O+3y9 4(:)’ coth (n(y —~y,)/d)

sinh? (e +yo)id) |+ \d) *7°sinhZ @(y + yo)id)

g (r—yo)
—2coth (n(y —yo)/d) + (3) m}
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GT(z,29) = 2 { 3 sinh (2n(y+yo)/d) 4 1—cosh 2n(y+yo)/d) cos (2mxo/d)
2200 = 7 \cosh @n(y + yo)/d) —cos @nxold) T d ” [cosh (2n(y + yo)/d) —cos (2nxe/d)]?
sinh (2n(y —yo)/d)
" cosh (2n(y—yq)/d) —cos (2mx,/d)
HO(z,20) =~ 2 sinh 2n(y +yo)/d) 8n 1 —cosh (2n(y+y,)/d) cos (2nx/d)
220) = 1 \cosh @n(y + yo)ld) —cos2axjd) T d ? [cosh @(y+ yo)/d) —cos Crx]d)]’

2 sinh 2n(y - y,)/d)
"~ cosh 2a(y — yo)/d) —cos 2nx/d)

o 4n sinh (2n(y + yo)/d)
Hizz) = {cosh Cr(r+yo)/d)—cos (2n(x—xo)/d)}' (A4)

The weight function G”(y, y,) coincides with that of Nemat-Nasser ez al. (1978).



